## BETHY

# **Multiplex IHC: Making Discoveries Multicolor**

## **Complexity of the Tumor Microenvironment**

The tumor microenvironment (TME) is a complex mass of malignant and nonmalignant cells, signaling molecules, extracellular matrix, and blood vessels. Immunomodulation of the T-cell response within the TME, via inhibition of immune checkpoints and co-inhibitory molecules such as CTLA-4 and PD-1, is a promising cancer therapy. Multiplex immunohistochemistry (mIHC) enables the tracking of multiple markers within the TME, predicting therapeutic response and highlighting new therapeutic targets.

### **TME Expression Profiles**

TME expression profiles guide understanding of the interactions between malignant and nonmalignant cells.

T cells: CD3, CD4, PD-1, CTLA-4, FOXP3, CD4 granzyme B, granzyme A, CD25, CD39, CD73, CD103

0

**Extracellular matrix:** collagen, fibronectin laminin

**TheScientist** 

. . . . . . . . . . . . . . . . . . .

# **ADVANTAGES OF**

Multiplex IHC allows for visualization of multiple targets within a single tissue section, critical for limited samples.

Tissue architecture is preserved allowing for observation of spatial information and co-expression within the TME, unlike alternative multiplex approaches such as NGS, PCR, mass spectrometry, etc.





Fluorophore detection systems offer major advantages over chromogenic detection:

- Fluorophores have a wider dynamic range and larger linear range than chromogenic substrates, tyramide-based multiplexing enhances fluorescence signal enabling detection of low-level binding sites.

 DAPI (DNA/nuclear counterstain) is superior to hematoxylin, which can be obscured by other targets with chromogenic staining.

• Fluorescence signals can be overlaid and seen as single or multi-channel, allowing for intensity measurements for each target.